Numerical Analysis
Preliminary Exam
May 17, 2001

Do any 8 of the following 10 problems.

Part 1: Numerical Linear Algebra

1. (a) Under what conditions does a real \(n \times n \) matrix \(A \) have a Schur decomposition \(A = U^T T U \), where \(U \) and \(T \) are real \(n \times n \) matrices with \(U \) orthogonal and \(T \) upper triangular?
(b) Under what conditions on \(A \) is \(T \) diagonal?
(c) Does the matrix

\[
A = \begin{pmatrix}
1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\]

have an orthogonal set of eigenvectors?
(d) Give a careful statement of the singular value decomposition of a real \(m \times n \) matrix.
(e) Under what conditions does the singular value decomposition exist?

2. Consider the linear system \(Ax = b \).
(a) If the rows of \(A \) are linearly independent, derive a formula for the solution of minimal 2-norm.
(b) If the columns of \(A \) are linearly independent, derive a formula for the \(x \) that minimizes the 2-norm of the residual \(r = b - Ax \).
(c) Use the singular value decomposition of \(A \) to give a formula for the \(x \) that minimizes the 2-norm of the residual, and among all the \(x \)'s which minimize the 2-norm, it has minimal norm.

3. (a) Given a vector \(x \in \mathbb{R}^n \) and a natural number \(k < n \), give a formula for a unit vector \(w \) for which the vector \(y = (I - 2ww^T)x \) satisfies the following conditions: \(y_i = x_i \) for \(i < k \) and \(y_i = 0 \) for \(i > k \).
(b) Using these Householder transformations, write a pseudo code (or a Matlab code) for reducing a real symmetric matrix to tridiagonal form using Householder similarity transformations.

4. (a) State and prove the Gerschgorin Circle Theorem.
(b) Let

\[
A = \begin{pmatrix}
5 & 1 & 3 \\
2 & 4 & 1 \\
3 & -1 & 4
\end{pmatrix}
\]

What can you say about the location of the eigenvalues of \(A \)?
(c) Use the Gerschgorin Circle Theorem to estimate the size of the largest root of the polynomial \(p(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x + a_0 \).
5. (a) Find the ellipse or hyperbola of the form \(ax^2 + by^2 = 1 \) that best fits \(n \) data points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) in the plane by computing the least solution to the \(n \) linear equations gotten by substituting each of the data points into the quadratic equation.

(b) Test your method with the dataset \((1,1), (2,4), (3,9), (4,16)\).

Part II: Numerical Analysis

6. (a) State Newton’s method (the algorithm) for solving \(f(x) = 0 \) where \(f: R \to R \).

(b) Assuming \(f \) is smooth and we have an initial guess sufficiently close to a root \(p \), state sufficient condition(s) for the method to converge quadratically.

(c) Show that Newton’s method applied to \(x^5 = 2 \) converges quadratically to the root \(2^{1/5} \) from any starting guess \(x > 0 \).

7. (a) Given a function \(f \) with \(n + 1 \) continuous derivatives on the interval \(I = [-1,1] \), show that, given \(n + 1 \) points \(\{x_0, x_1, \ldots, x_n\} \) in \(I \), there exists a unique polynomial \(P_n(x) \) of degree \(\leq n \) such that

\[
P_n(x_i) = f(x_i) \quad \text{for} \quad i = 0 \ldots n.
\]

(b) Prove that, given \(t \in I \), there exists \(\eta \in I \) such that

\[
f(t) - P_n(t) = \frac{(t - x_0) \cdots (t - x_n) f^{(n+1)}(\eta)}{(n+1)!}.
\]

(c) From the above we get that (all norms are on the interval \(I \))

\[
\|f - P_n\|_\infty \leq \max_{t \in I} |(t - x_0)(t - x_1) \cdots (t - x_n)| \frac{\|f^{(n+1)}\|_{\infty}}{(n+1)!}.
\]

What choice for the points \(x_0, \ldots, x_n \) minimizes the right hand side of this error bound?

8. (a) Find a function \(q(x) \) which has a continuous first derivative for each \(x \in (-\infty, \infty) \) with the properties:

\[
q(x) = \begin{cases}
1 & \text{if } x = 0 \\
0 & \text{for all } |x| \geq 2 \\
a_0 + a_1 x + a_2 x^2 & \text{for all } x \in [-2, -1] \\
b_0 + b_1 x + b_2 x^2 & \text{for all } x \in [-1, 1] \\
c_0 + c_1 x + c_2 x^2 & \text{for all } x \in [1, 2]
\end{cases}
\]

(b) Use the function \(q(x) \) defined in part a to interpolate a set of equally spaced points \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n), \) where \(h = x_{k+1} - x_k \) for all \(k \). In particular, describe how to find constants \(c_k \) so that the function \(Q(x) = \sum_{k=0}^{n} c_k q\left(\frac{x-x_k}{h}\right) \) has the property that \(Q(x_k) = y_k \) for all \(k \).

9. Let \(P_2(x) \) be a quadratic polynomial interpolating \(g(x) \) at \(x = 0, h, 2h \).

(a) Use this to derive a numerical integration formula \(I_h \) for

\[
I = \int_{-h}^{3h} g(x)dx.
\]
(b) Use a Taylor series expansion of \(f(x) \) to show

\[
I - I_h = \frac{3}{8} h^4 f^{(3)}(0) + O(h^5).
\]

10. **Triple Recursion Formula** If \(\{\phi_n(x)\} \) is an orthogonal family of polynomials on \([a, b]\), with respect to the weight function \(w(x) \geq 0 \), and \(n \geq 1 \), then show that \(\phi_{n+1}(x) = (a_n x + b_n)\phi_n(x) - c_n \phi_{n-1}(x) \), for some constants \(a_n, b_n, \) and \(c_n \). (Hint: Let \(g(x) = \phi_{n+1}(x) - a_n x \phi_n(x) \), where \(a_n \) is a constant chosen so that \(g(x) \) has degree \(n \).)