PhD Complex Analysis Exam, January 3, 2014.

Do any 9 problems.

The notation \(f \in H(\Omega) \) means \(f \) is holomorphic in the domain \(\Omega \).

1. Prove the fundamental theorem of algebra.

2. Let \(\Omega \) be a domain on the complex plane and \(M \) be a finite positive constant. Suppose \(F \) is a family of holomorphic functions on \(\Omega \). If \(|f(z)| \leq M \) for all \(z \in \Omega \) and all \(f \in F \), prove that \(F \) is equi-continuous on \(\Omega \).

3. Let \(f_n \in H(\Omega), n = 1, 2, 3, \ldots \) be one to one in \(\Omega \). If \(f_n \to f \) uniformly on compact subsets in \(\Omega \), prove that \(f \) is either one to one or constant. Show with examples that both conclusions can occur.

4. Let \(f \in H(\Omega) \). If \(f \) has no zeros in \(\Omega \), prove that \(\ln |f| \) is harmonic in \(\Omega \).

5. Evaluate the integral
\[
\int_0^\infty \frac{\ln x}{(x^2 + b^2)^2}, b > 0.
\]

6. Let \(\mathbb{C} \) be the complex plane. Suppose \(f : \mathbb{C} \to \mathbb{C} \) is continuous and \(f \) is holomorphic except in \([-1, 1]\). Prove that \(f \) is entire.

7. Prove that a doubly periodic entire function is constant.

8. Let \(P \) be a polynomial and \(C \) the circle \(|z - a| = R\). Evaluate the integral \(\int_C P(z)dz \).

9. Let \(f, F \in H(U), \) where \(U = \{z : |z| < 1\} \) and let \(R_f = \{f(z) : z \in U\} \) and \(R_F = \{F(z) : z \in U\} \). Suppose \(F \) is one to one in \(U \), \(f(0) = F(0) \) and \(D_f \) is contained in \(D_F \). Prove that there exists an \(\omega \in H(U) \) such that \(f(z) = F(\omega(z)) \) and \(|\omega(z)| \leq |z| \). Also show that the equality holds if and only if \(D_f = D_F \).

10. Suppose \(f \in H(\Pi^+) \), where \(\Pi^+ \) is the upper half plane and \(|f| \leq 1 \). How large can \(|f'(i)| \) be? Find the extremal functions.

11. Find all entire functions \(f \) such that \(|f(z)| = 1 \) whenever \(|z| = 1 \).