PH.D. QUALIFYING EXAM IN COMPLEX ANALYSIS

Give complete proofs and computations. Partial credit will be given where justified. In the following, \(\mathbb{C} \) denotes the set of complex numbers and \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \).

1) Evaluate the integral
\[
\int_0^\infty \frac{\log x}{(1 + x^2)^2} \, dx.
\]

2) (a) Let \(f \) be analytic at \(z \in \mathbb{C} \). Prove that
\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4|f'(z)|^2.
\]
(b) Let \(f_1, f_2, \ldots, f_n \) be analytic in the region \(G \). Prove that \(|f_1|^2 + |f_2|^2 + \ldots + |f_n|^2 \) is harmonic on \(G \) if and only if \(f_k \) is constant, for all \(k = 1, \ldots, n \).

3) Let \(\{ f_n \} \) be a sequence of functions, each analytic in the open set \(G \), which converges to \(f \) uniformly on all compact subsets of \(G \). Prove that \(f \) is analytic in \(G \).

4) Let \(P(z) = z^7 + z^5 + 5z^3 + 1 \). Find the number of zeros of \(P \) counted according to their multiplicities in
 (a) \(\{ z \in \mathbb{C} \mid |z| < 1 \} \)
 (b) \(\{ z \in \mathbb{C} \mid 1 < |z| < 2 \} \)
 (a) \(\{ z \in \mathbb{C} \mid |z| > 0 \} \)

5) Let \(G \) be a region and \(f \) be analytic in \(G \). Prove that if \(f(G) \) is a subset of a circle, then \(f \) is a constant function.

6) Suppose \(f \) is a nonconstant analytic function in \(D \) such that \(|f(z)| \leq 1 \). Let \(a = f(0) \). By considering the function
\[
g(z) = \frac{f(z) - a}{1 - \overline{a}f(z)},
\]
prove that
\[
\frac{|a| - |z|}{1 + |a||z|} \leq |f(z)| \leq \frac{|a| + |z|}{1 - |a||z|}
\]
for \(|z| < 1 \).

7) (a) Does there exist an analytic mapping \(f : D \to D \) such that \(f(0) = 0 \) and \(f\left(\frac{1}{2}\right) = \frac{1}{3} \)? Justify your answer.
 (b) Does there exist an analytic mapping \(f \) of \(\{ z \in \mathbb{C} \mid \text{Re}(z) > 0 \} \) into itself such that \(f(3) = 3 \) and \(f(9) = 6 \)? Justify your answer.

8) Let \(\mathcal{F} \) be the collection of all analytic mappings of \(D \) into \(\{ z \in \mathbb{C} \mid \text{Re}(z) > 0 \} \) such that \(f(0) = 1 \). Show that \(\mathcal{F} \) is a normal family.