1. Let \(\lambda > 1 \). How many solutions does the equation \(\lambda - z - e^{-z} = 0 \) have in the right half plane \(\{ z : \text{Re} z > 0 \} \).

2. Determine all one-one entire functions.

3. Determine the order of the entire function \(\cosh(\sqrt{z}) \).

4. Does there exist a function analytic in \(|z| < 1 \) satisfying \(|f| < 1 \), \(f(0) = 0 \) and \(f(1/2) = 3/4 \)?

5. Let \(a_n \geq 0 \) and \(f = \sum_{n=0}^{\infty} a_n z^n \) with radius of convergence \(\infty > R > 0 \). Show that \(z = R \) is a singularity of \(f \). (Suggestion: Show, if \(R > r > 0 \) and
\[
\sum \frac{f^{(n)}(r)}{n!} (z - r)^n
\]
has radius of convergence \(R' \), then for each \(|z_0| = r \)
\[
\sum \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n
\]
has radius of convergence at least \(R' \). Conclude \(f \) is analytic in \(|z| < R' + r \).

6. Show that \(f(z) = \sum \frac{z^n}{n^2} \) is analytic at each point \(|z| = 1 \), except \(z = 1 \).

7. Suppose \(f \) is entire of order \(\rho \). Let \(n(r) \) denote the number of zeros of \(f \) in the disc \(|z| < r \). Show
\[
\limsup_{r \to \infty} \frac{\log(n(r))}{\log(r)} \leq \rho.
\]

8. Evaluate the integral
\[
\int_0^{\infty} \frac{t^a}{1 + t + t^2} dt - 1 < a < 1.
\]
(Suggestion: Integrate along the keyhole contour, cut along the nonnegative real axis consisting of the two edges of the real axis from \(\epsilon \) to \(R \) and a small circle of radius \(\epsilon \) and a large circle of radius \(R \) about the origin.)

9. Let \(A \) denote the region inside the circle \(|z - 2| = 2 \) and outside the circle \(|z - 1| = 1 \). Construct a conformal map of \(A \) onto the unit disc. (Suggestion: Where does the map \(1/z \) carry \(A \)?)