1. Let a_n denote the number of strings of the letters A, B, C, and D such that the letter A appears an odd number of times.

 (a) Find a closed formula for a_n.

 (b) Find the exponential generating function for the sequence $\{a_n\}$.
 (using no summation signs)
2. The set \([n] \times [n]\) is partially ordered by the relation \((a, b) \preceq (c, d)\) which holds when \(a \leq c\) and \(b \leq d\). Find, with proof, the length of a maximum chain and the length of a maximum antichain.

What is the size of a minimum chain decomposition of this poset. (Recall that a chain decomposition of a poset is a partition of its elements into disjoint chains.)
3. (a) Prove that, for a simple graph G with at least 5 vertices, at least one of G or its complement has a cycle.

(b) Suppose that you color the edges of K_n using 2 colors. Show that there exists a monochromatic spanning tree.
4. A *parity check matrix* H of a binary linear code C can be defined as a generator matrix of the dual code C^\perp.

Show that C is the null space of the transpose H^T, where multiplication by H^T is on the right, i.e., cH^T.

Show that the minimum distance of the code equals the cardinality of a minimum dependent set of columns of H.

If a generator matrix of a binary linear code C is

$$
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{pmatrix},
$$

then show that $(c_1, c_2, c_3, c_4, c_5)$ is a codeword if and only if (modulo 2)

$$
c_1 + c_2 + c_3 = 0 \\
c_2 + c_4 = 0 \\
c_1 + c_5 = 0.
$$

What is the minimum distance of this code?
5. Let \(g(n) \) be the number of permutations of length \(n \) in which each cycle is of even length. Find the exponential generating function of the sequence \(g(n) \), where \(n = 0, 1, 2, \cdots \).
6. Let \(t_n \) be the total number of cycles of all permutations of length \(n \). So \(t_1 = 1 \), \(t_2 = 3 \), and \(t_3 = 11 \). Find an explicit formula for the numbers \(t_n \). Your answer can contain one summation sign.
7. Prove that the language \(\{a^{n^2} : n \in \mathbb{N}\} \) is not regular.
8. Let β be a permutation of length k. Prove that there are precisely $k^2 + 1$ permutations of length $k + 1$ containing β.