Show your work.

1a. There are \(r \) black and \(n - r \) white balls in an urn. They are removed one at a time without replacement. What is the probability that exactly \(k \) drawings are required to get a white ball?

b. Use your result to conclude that

\[
\sum_{k=1}^{r} \frac{(r)_k}{(n-1)_k} = \frac{r!}{n! (n-r)!} = \frac{n}{n-r}
\]

2. Each of \(n \) people is to be mailed an envelope containing a letter and an bill. How many ways \(Q_n \) are there of placing the \(n \) letters and \(n \) bills into \(n \) addressed envelopes so that no envelope contains both the correct letter and bill?

3. Let \(P_n \) be the total number of \(k \)-permutations of \(n \) for various \(k \), that is,

\[
P_n = \sum_{k=0}^{n} (n)_k, \quad n = 0, 1, \ldots
\]

Show that

\[
P(t) = \sum_{n=0}^{\infty} P_n \frac{t^n}{n!} = (1 - t)^{-1} e^t
\]

and use this to show that

\[
P_n = nP_{n-1} + 1, \quad n = 1, 2, \ldots, P_0 = 1.
\]

4. Define the binary Hamming code \(H(r) \) of length \(2^r - 1 \). Show that \(H(r) \) is an exactly single error correcting code and that \(H(r) \) is a perfect code. Determine the number of codewords of weight 3 in \(H(r) \).

5. Show that the number of partitions of a number \(n \) into exactly \(m \) parts is equal to the number of partitions of \(n - m \) into no more than \(m \) parts.

6. An order on the set of ordered pairs of non-negative integers is defined by \((a_1, a_2) \leq (b_1, b_2)\) if \(a_i \leq b_i \) for \(i = 1, 2 \). Find the Möbius function of this poset.

7. Determine for which values of \(m \) and \(n \) the complete bipartite graph \(K_{mn} \) is (a) planar, (b) Eulerian, (c) Hamiltonian.

Answer the same three questions for the \(n \)-cube. (Recall that the \(n \)-cube \(Q_n \) is defined as the graph whose vertices are the set of all binary sequences of length \(n \).)
where two vertices are adjacent if the corresponding sequences differ by exactly one digit.

8. Let G be a triangle-free graph with n vertices, minimum degree k and girth g. Prove that $g \leq 2n/k$.

Hint: For an appropriate cycle C count the number of edges from C to $G \setminus C$ in two ways.