Do 4 out of 5 problems.

1. A \(k \)-arc of a projective plane \(\Pi \) is a set of \(k \) points, no three of which are collinear. Prove that every 4-arc in the plane \(PG(2, 4) \) lies in exactly two 5-arcs.

2. Use (without proof) the assertion of problem #1 to prove that the 5-arcs of \(\Pi = PG(2, 4) \) form a block design \(\Sigma \) on the point set of \(\Pi \); with \(v = 21 \) and \(k = 6 \). Compute \(\lambda \).

3. State the Hall Multiplier Theorem, and use it to find a \((91, 10, 1)\) difference set.

4. HC is the problem of deciding whether a graph has a Hamiltonian circuit or not, and this problem is known to be NP-complete. Use this fact to prove that HP is also NP-complete, where HP is the problem of deciding whether a graph has a Hamiltonian path (with unspecified initial and terminal vertices).

5. Let \(E \) be a finite set and \(P \) a partition of \(E \). Call a subset \(I \) of \(E \) independent \((I \in \mathcal{I}) \) if no two elements of \(I \) are in the same block of \(P \).

1. Prove that \((E, \mathcal{I})\) is a matroid (called a partition matroid).
2. For a bipartite graph \(B \) with edge set \(E \) let \(\mathcal{M} \subseteq 2^E \) denote the set of matchings on \(B \). Show that \((E, \mathcal{M})\) is not a matroid.
3. Prove that \(\mathcal{M} \) is the intersection of two partition matroids. In other words there are partition matroids \((E, \mathcal{I}_1)\) and \((E, \mathcal{I}_2)\) such that \(\mathcal{M} = \mathcal{I}_1 \cap \mathcal{I}_2 \).

Part 3 is significant because there is a general result that states that if \((E, \mathcal{M})\) is such a matroid intersection then there is a polynomial algorithm to find a maximum cardinality independent set.