(1) (a) State the Vitali convergence theorem (define all terms).
(b) Use this theorem to prove the Lebesgue Dominated Convergence theorem (first state this theorem).

(2) Let f be an integrable function on (S, Σ, μ). Let ν be the indefinite integral of ν. Let $|\nu|(.)$ denote the total variation of ν defined on Σ. Show that $|\nu|(.)$ is the indefinite integral of an a.e. unique integrable function g. What is the relationship between g and f? Prove.

(3) Let (S, Σ, μ) be a finite measure space. Suppose x^* belongs to the dual space of $L^1(S, \Sigma, \mu)$. Show that there exist an a.e. unique integrable function g such that

$$x^*(f) = \int_S fg \, d\mu, \text{ for each } f \in L^1(S, \Sigma, \mu).$$

[You need not prove that $g \in L^\infty$, etc].

(4) Let \{y_n\} be an orthogonal sequence in a Hilbert space. Show $\sum y_n$ converges unconditionally if and only if $\sum |y_n|^2 < \infty$.

(5) Let X be a Banach space with closed linear subspaces Y and Z. Suppose each x in X is the unique sum $y + z$ where $y \in Y$ and $z \in Z$. Show that there is a constant K such that $|y| \leq K|x|$ and $|z| \leq K|x|$ for each x in X with representation $x = y + z$.

[Hint: Use the open mapping theorem or closed graph theorem for certain maps]

(6) Let \{x_n\} be a weakly convergent sequence in a normed space X. Show that the weak limit belongs to the norm closed span of x_n.