I. State the following theorems:

1. The monotone convergence theorem
2. The Hahn decomposition theorem
3. The Egorov theorem
4. The Vitali convergence theorem
5. The Radon-Nikodym theorem
6. The Fubini theorem
7. The representation of the dual of L^p
8. The Lebesgue dominated convergence theorem

II. Prove one of the theorems 6 or 7.

III. Solve 5 of the following problems

1) In what follows, (X, \mathcal{E}, μ) is a measure space.

1) Let (f_n) be a sequence of real valued measurable functions on X and f a real measurable function on X. Prove that (f_n) converges to f in μ-measure if every subsequence (f_{n_k}) contains a further subsequence $(f_{n_{k_l}})$ converging to f, μ-a.e.

2) Let (f_n) be a sequence of positive, μ-integrable functions such that $\sum_n \int_X f_n \, d\mu < \infty$. For each $x \in X$ denote

$$L(x) = \sup \{ n ; f_n(x) > 0 \}$$

Prove that $L(x) < \infty$, μ-a.e.

3) Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Prove that for every $\varepsilon > 0$, there is a bounded interval I such that $\int_E |f| \, dx / |I| < \varepsilon$ for every measurable set E with $E \cap I = \emptyset$.
4.) Let F be a Banach space and \mathcal{F} be a sub-σ-algebra. Prove the existence of the conditional expectation $E(f\mid\mathcal{F})$ for every μ-integrable function $f: X \to F$.

5.) Let (X, \mathcal{S}, μ), (Y, \mathcal{T}, ν) be two real measure spaces. Prove the existence of the product measure $\mu \times \nu$ and that $1_{X \times Y} = 1_{\mu} \times 1_{\nu}$.

6.) Let μ be the Lebesgue measure on \mathbb{R} and f a Lebesgue integrable function on \mathbb{R} such that $\int_{0}^{x} f \, d\mu = 0$ for every $x \in \mathbb{R}$ (if $x < 0$, $\int_{x}^{0} f \, d\mu = -\int_{0}^{x} f \, d\mu$). What can you say about f?

7.) Let μ be the Lebesgue measure on \mathbb{R} and $f_n = -4^n \chi_{(-n, n)}$, $n = 1, 2, \ldots$. Show that (f_n) is increasing but that the conclusion of the monotone convergence theorem is not true. Explain why.

8.) Let μ be the Lebesgue measure on $(0, 1)$. Each point $x \in (0, 1)$ has a binary expansion $x = \sum_{i=1}^{\infty} \frac{x_i}{2^i}$, where $x_i = 0$ or 1. (The expansion is unique except a countable set, where we can throw out of the space).

(i.) Define $\mathcal{F}_k(x) = x_k$. Sketch the graphs of $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$.

(ii.) Let $\frac{\mathcal{F}_k}{\mathcal{F}_k} = \sigma(\mathcal{F}_k, \mathcal{F}_2, \ldots, \mathcal{F}_{k-1})$. Describe \mathcal{F}_k.

(iii.) Let $f \in L^2(\mu)$. Find a function g_1 which is \mathcal{F}_1-measurable and satisfies $\int_X g_1 \, d\mu = \int_X f \, d\mu$ for $A \in \mathcal{F}_1$.

(i.e. Find $g_1 = E(f \mid \mathcal{F}_1)$. Find $g_2 = E(f \mid \mathcal{F}_2)$.)