1. Suppose p_1, p_2, \ldots, p_r are distinct primes, and $K = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_r})$, find the Galois group of K/\mathbb{Q}. How many fields F are there such that $\mathbb{Q} \subseteq F \subseteq K$?

2. (i) Show that if K/k and L/K are separable algebraic extensions, then so is L/k. (ii) Give an example of normal extensions K/k, L/K such that L/k is not normal.

3. Suppose K is an algebraic extension field of k and \overline{k} is an algebraic closure of k. Show that K/k is separable if and only if the ring $\overline{k} \otimes_k K$ has no nonzero nilpotent elements.

4. Suppose A is a commutative ring with identity and $S \subset A$ is a multiplicative set not containing 0. (i) Show that there is a prime ideal $p \subset A$ such that $p \cap S = \emptyset$. (ii) Use part (i) to show that the intersection of all prime ideals of A is the set of nilpotent elements.

5. Suppose k is a field and A is a finitely generated commutative k-algebra. Let \overline{k} be an algebraic closure of k. Note that the Galois group $G = \text{Gal}(\overline{k}/k)$ acts on the set $\text{Hom}_k(A, \overline{k})$ of k-algebra homomorphisms $A \rightarrow \overline{k}$ by composition. Construct a bijection of the set of orbits of G on $\text{Hom}_k(A, \overline{k})$ with the set of maximal ideals in A.

6. Suppose A is an integral domain. Show that an ideal $I \subseteq A$ is invertible if and only if it is projective and finitely generated.

7. Suppose X is a nonempty set and $F(X)$ is the free group on X. Show that $F(X)$ is abelian if and only if X is a singleton.

8. (i) Define what it means for a group to be nilpotent. (ii) Show that if G is a finite nilpotent group, then any Sylow subgroup is normal.

9. Suppose A is a commutative ring with identity and B is a commutative A-algebra with structure map $f : A \rightarrow B$. Show that the forgetful functor from the category of B-modules to the category of A-modules induced by f has a left adjoint.

10. Let p be a prime. Find all the isomorphism classes of noncommutative semisimple rings A of cardinality p^{10}.

11. Suppose R is a finite commutative ring with identity, such that $x^3 = x$ for all $x \in R$. Show that R is a finite direct sum of fields isomorphic to \mathbb{F}_2 or \mathbb{F}_3.