Name: ________________________________
Problems to be graded: 1 2 3 4 5 6 7 8 9 10 11

Note. Below ring means associative ring with identity, and module means unital module.

1. (10 points) Let \(f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x] \) be a polynomial with integer coefficients of degree \(n > 1 \). Suppose that for some \(k \), with \(0 < k < n \) and some prime \(p \), we have \(p \nmid a_n; p \nmid a_k; p \mid a_i \) for \(i = 0, \ldots, k - 1 \); and \(p^2 \nmid a_0 \). Show that \(f(x) \) has a factor of degree at least \(k \) which is irreducible in \(\mathbb{Z}[x] \).

2. (10 points) Calculate the Galois group of \(x^5 - 12x + 2 \) over \(\mathbb{Q} \), the field of rational numbers. Justify your answer carefully.

3. (a) (5 points) Give an example of fields \(M \supseteq L \supseteq K \) such that \(M/L \) and \(L/K \) are normal extensions, but \(M/K \) is not normal. Justify your answer.
 (b) (5 points) Let \(L \supseteq K \) be fields such that \([L : K] = 8 \). Prove that there exist \(\alpha, \beta, \gamma \in L \) such that \(L = K(\alpha, \beta, \gamma) \).

4. (10 points) Prove that the group defined by generators \(a \) and \(b \) and relations \(a^2 = b^3 = 1, \ abab = 1 \) is isomorphic to \(S_3 \).

5. (10 points) Let \(R \) be a ring with 1 and let

\[
0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0
\]

be a short exact sequence of (left) \(R \)-modules. Show that for any (right) \(R \)-module \(M \), the sequence

\[
M \otimes_R A \xrightarrow{1_M \otimes f} M \otimes_R B \xrightarrow{1_M \otimes g} M \otimes_R C \to 0
\]

of tensor products, is exact.

6. (10 points) State and prove Hilbert’s Basis Theorem.
7. (10 points) Prove the Lying-Over Theorem: Let S be an integral extension of an integral domain R, and let P be a prime ideal of R. Then, there exists a prime ideal Q of S, such that $Q \cap R = P$.

8. (10 points) Prove that a commutative ring R with identity is local if and only if, for all $r, s \in R$, $r + s = 1_R$ implies that either r or s is a unit.

9. Let R be a ring.
 (a) (3 points) Define what it means for an R-module M to be projective.
 (b) (4 points) Prove that any free R-module is projective.
 (c) (3 points) Prove that there exists some ring R and some projective R-module P such that P is a projective module but not a free module.

10. (10 points) Determine up to isomorphism all semisimple noncommutative rings with $512 = 2^9$ elements.

11. Let C be the category of all finitely generated \mathbb{Z}-modules, where \mathbb{Z} is the ring of integers.
 (a) (3 points) Recall the definition of (direct) product in an arbitrary category D.
 (b) (4 points) Prove from your definition that, given a finite set S of objects in C, there is a product P of S in C.
 (c) (3 points) Prove from your definition that there exists some set T of objects in C, such that there is no product of T in C.