Please do 7 out of the 11 problems below.

Question 1. An algebraic extension field \(F \) of \(K \) is said to be normal over \(K \) if every irreducible polynomial in \(K[x] \) that has a root in \(F \) actually splits in \(F[x] \).

Prove that an algebraic extension \(F \) of \(K \) is normal over \(K \) if and only if for every irreducible \(f \in K[x] \), \(f \) factors in \(F[x] \) as a product of irreducible factors all of which have the same degree.

Question 2.
(a). Show that the additive group of rationals \(\mathbb{Q} \) is not free.
(b). Show that the group \(\mathbb{Q}^* \) of all positive rationals (under multiplication) is free abelian with basis \(\{ p : p \) is prime in \(\mathbb{Z} \} \).

Question 3. Show that any simple group \(G \) of order 60 is isomorphic to \(A_5 \). (If you want, you may use the fact that for each \(n \geq 2 \), \(A_n \) is the only subgroup of \(S_n \) of index 2.)

Question 4. Let \(R \) be an integral domain and for each maximal ideal \(M \), consider the localization \(R_M \) as a subring of the quotient field of \(R \). Show that \(\cap M = R \), where the intersection is taken over all maximal ideals \(M \) of \(R \).

Question 5.
(a). Define solvable group.
(b). Prove that any group of order 48 is solvable (without using Burnside's (p,q)-Theorem).

Question 6. Let \(R \) be a ring. Show that the following conditions on an \(R \)-module \(P \) are equivalent.

(i). \(P \) is projective.
(ii). Every short exact sequence

\[
0 \to A \xrightarrow{f} B \xrightarrow{g} P \to 0
\]

is split exact.
(iii). There is a free module \(F \) and an \(R \)-module \(K \) such that \(F \cong K \oplus P \).

Question 7. Let \(C \) and \(D \) be categories, and let \(S \) and \(T \) be covariant functors from \(C \) to \(D \).

(a). Define a natural isomorphism \(\alpha : S \to T \).
(b). If \(B \) is a unitary left module over a ring \(R \) with identity, show that there is a "natural" isomorphism of modules

\[
\alpha_B : R \otimes_R B \cong B.
\]
Question 8. Let R be a commutative ring with identity.
(a). Let A be an ideal in R, and assume that M is a finitely generated R-module such that $A.M = M$. Show that there is some $a \in A$ satisfying $(1 + a)M = 0$.
(b). Let M be a finitely-generated R-module. Show that $J(R).M = M$ implies $M = \{0\}$. (Here, $J(R)$ denotes the Jacobson radical of R.)

Question 9.
(a). Show that if R is a unique factorization domain, then R is integrally closed.
(b). Find the integral closure of $\mathbb{C}[z^3, z^7]$.

Question 10.
(a). Show that $\mathbb{C}[x, y]/(xy - 1)$ (quotient of polynomial ring in 2 variables) is not isomorphic to $\mathbb{C}[t]$ (polynomial ring in 1 variable).
(b). Show that the set \[
\{(m, n) : m, n \in \mathbb{Z}\}
\]
is not an algebraic variety in \mathbb{C}^2.

Question 11.
(a). Find the Galois group of $K : \mathbb{Q}$, where K is a splitting field over \mathbb{Q} for $t^4 + t^2 - 6$.
(b). Write down the subgroups of the Galois group.
(c). Write down the corresponding fixed fields.