Ph.D. Level Examination in Algebra
Fall 1982

Do seven problems, at least two from each section.

I. Group Theory.

1. Let G be the group of all 3×3 non-singular matrices of determinant 1 with coefficient in the field of 3 elements.
 (a) Find $|G|$.
 (b) Find a Sylow 3-subgroup of G.
 (c) Compute $|\text{Syl}_3(G)|$, where $\text{Syl}_3(G)$ is the set of all Sylow 3-subgroups of G.

2. Let G be a finite group acting transitively on a set X, $x \in X$, and P be a Sylow p-subgroup of G_x for some prime p. Consider the set $\text{Fix}(P) = \{y \in X | y^P = y\}$, the set of fixed points of P.
 (a) Prove that $N_G(P)$ acts on $\text{Fix}(P)$, i.e., maps $\text{Fix}(P)$ to $\text{Fix}(P)$.
 (b) Prove that $N_G(P)$ acts transitively on $\text{Fix}(P)$.

3. Two permutation representations $G \rightarrow \Sigma(X_1)$, (the symmetric group on X_1) are equivalent if there exists $\alpha : X_1 \rightarrow X_2$ such that for all $g \in G$, $x \in X_1$, we have $x(g\pi_1)\alpha = (x\alpha)(g\pi_2)$.
 Prove that the following two permutations of S_4 of degree 12 are not equivalent:
 (a) on the right coset space of $<(12)>$.
 (b) on the right coset space of $<(12)(34)>$.

4. Let G be a finite group and $A \leq \text{Aut}(G)$ such that $G = [G,A]$. Suppose $N \triangleleft G$ satisfying $[N,A] = 1$. Use the 3-subgroup lemma to prove $N \triangleleft Z(G)$, the center of G.
 (Recall the 3-subgroups lemma: For three subgroups X, Y, Z of a group M if $[X,Y,Z] = 1$ and $[Y,Z,X] = 1$, then $[Z,X,Y] = 1.$)
II. Homological algebra.

1. Let \(R \) be a ring and consider the following commutative diagram of \(R \)-modules and \(R \)-module homomorphisms such that each row is a short exact sequence.

\[
\begin{array}{cccc}
0 & \longrightarrow & A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & 0 \\
\downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \\
0 & \longrightarrow & A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & 0
\end{array}
\]

Prove that if \(\alpha \) and \(\gamma \) are isomorphisms then \(\beta \) is also an isomorphism.

2. Prove the \(\mathbb{Z} \)-module isomorphisms:
 (a) \(\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/c\mathbb{Z} \)
 (b) \(\text{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/c\mathbb{Z} \)

where \(c = (m,n) \) is the greatest common divisor.

3. A module \(P \) over a ring \(R \) is said to be projective if given any diagram of \(R \)-module homomorphisms with \(g \) surjective

\[
\begin{array}{ccc}
P & \xrightarrow{f} & B \\
\downarrow & & \downarrow g \\
A & \xrightarrow{f} & B
\end{array}
\]

there exists an \(R \)-module homomorphism \(h: P \rightarrow A \) such that the following diagram is commutative

\[
\begin{array}{ccc}
P & \xrightarrow{h} & A \\
\downarrow & & \downarrow \alpha \\
A & \xrightarrow{f} & B
\end{array}
\]

Prove that the following conditions on a ring \(R \) with identity are equivalent:

(a) Every \(R \)-module is projective.

(b) Every short exact sequence of \(R \)-modules splits.
III. Commutative algebra.

1. A non-empty subset S of a ring R with identity is called multiplicative if $ab \in S$ whenever $a, b \in S$.

 (a) If I is a proper ideal of R disjoint from S, then prove that there exists an ideal P maximal with respect to containing I and being disjoint from S. Furthermore, show that P is a prime ideal.

 (b) If P is a prime ideal of ring R, define the localization of R at P and prove that the localization has a unique maximal ideal.

2. Find a reduced primary decomposition for the following ideals. Also give the prime ideals to which the primary ideals belong.

 (a) (24) as an ideal in \mathbb{Z}.

 (b) $(2x, x^2)$ as an ideal in $\mathbb{Z}[x]$.

 (c) What theorems allow us to conclude that every ideal in $\mathbb{Z}[x]$ has a primary decomposition.

3. Let R be a unique factorization domain and K its field of fractions.

 (a) Show that if $a \in K$ is integral over R then $a \in R$. (In other words, R is integrally closed.)

 (b) True or false: If S is a subring of K containing R, then S is also a unique factorization domain. If true, prove your answer. If false give examples of R, K and S that show it not to be true.

4. Determine, up to isomorphism, all semisimple rings of order $1008 = 2^5 \cdot 3^2 \cdot 7$.