Ph.D. Examination – Topology
May 2017

Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper.

1. Prove that a compact Hausdorff space is regular.
2. Prove that if \(n > 0 \) every map \(S^n \to S^n \) is homotopic to a map with a fixed point.
3. The oriented surface \(M_g \) of genus \(g \), embedded in \(\mathbb{R}^3 \) in the standard way, bounds a compact region \(R \). Two copies of \(R \), glued together by the identity map between their boundary surfaces \(M_g \), form a closed 3-manifold \(X \). Compute the homology groups of \(X \) using the Mayer–Vietoris sequence.
4. Let \(f : S^1 \to \mathbb{R} \) be a continuous map. Prove that there exists a point \(x \in S^1 \) with \(f(x) = f(-x) \). (Note: do not simply state the Borsuk–Ulam Theorem; give a direct proof.)
5. Let \(M \) be a closed simply-connected orientable 3-manifold. Compute the integral homology and cohomology of \(M \). What can you say about \(\pi_i(M), i \leq 3 \)?

Answer the following with complete definitions, statements, or short proofs.

6. Prove that for a finite CW-complex \(X \), \(H^1(X; \mathbb{Z}) \) is torsion-free.
7. Compute \(\chi(\mathbb{C}P^3 \times \mathbb{R}P^2 \times S^2) \)
8. Give an example of a space that is path-connected but not locally path-connected.
9. State the Urysohn Lemma.
10. Prove that if \(m \neq n \), then \(\mathbb{R}^m \) is not homeomorphic to \(\mathbb{R}^n \).
11. Does the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = \arctan x \) admit a continuous extension \(\bar{f} : \beta\mathbb{R} \to \mathbb{R} \) to the Stone–Čech compactification? What about the function \(g(x) = e^x \)?
12. State the Lefschetz Fixed Point Theorem.
13. Describe all the connected covering spaces \(E \to S^1 \).
14. Does the following exact sequence of abelian groups necessarily split? Prove or give a counterexample.
\[
0 \to \mathbb{Z} \to A \to B \to 0
\]
15. Compute the integral homology of the space \(\mathbb{R}P^4 \times \mathbb{C}P^2 \).