1. (a) Show the matrix norm equality for $A \in \mathbb{C}^{m \times n}$

$$\|A\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$$

(b) Explain why the matrix 1-norm, 2-norm and ∞-norm are the most commonly used of the matrix p-norms in scientific computing.

(c) Show $\rho(A) \leq \|A\|$ where $\|A\|$ is any subordinate (induced) matrix norm and $\rho(A)$ is the spectral radius of A.

2. Let $A \in \mathbb{C}^{m \times n}$ with $\text{rank}(A) = n < m$. Let $A = QR$ be the QR decomposition of A, and $A = Q_1R_1$ be the economy QR decomposition.

(a) Show $Q_1Q_1^*$ is an orthogonal projector onto $\text{Col}(A)$.

(b) Let $b \in \mathbb{C}^m$. Write down an expression for the least-squares solution to $Ax = b$ as the solution to an $n \times n$ system in terms of Q_1, (and/or Q_1^*), R_1, x and b.

3. Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\text{rank}(A) = p$ and $p \leq n \leq m$.

(a) Show $\text{Col}(A^*) = \text{Span}\{v_1, v_2, \ldots, v_p\}$, where v_1, \ldots, v_p are the first p columns of V.

(b) Show $\text{Null}(A) = \text{Span}\{v_{p+1}, v_{p+2}, \ldots, v_n\}$.

(c) Suppose the right singular vectors v_1, \ldots, v_p have been computed. Describe how to compute the left singular vectors u_1, \ldots, u_p (without solving a spectral problem).

4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and E is $n \times n$ with $\|A^{-1}\||E| < 1$, then show

(a) $A + E$ is nonsingular

(b)

$$\|(A + E)^{-1}\| \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\||E|}.$$

5. Consider the matrix A given by

$$
\begin{pmatrix}
1 & -1 & 2 & 0 \\
-1 & 4 & -1 & 1 \\
2 & -1 & 6 & -2 \\
0 & 1 & -2 & 4
\end{pmatrix}
$$

Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$.

(a) Show that A is positive definite.

(b) Describe an algorithm that could be used to converge to λ_4.

(c) Describe an algorithm that could be used to converge to λ_2.

Numerical Analysis Exam: May, 2019

Do 4 (four) problems.

1. Consider the fixed point problem \(x = f(x) \) where \(f(x) = e^{-(2+x)} \).
 (a) Find the largest open interval in \(\mathbb{R} \) where \(f(x) \) is a contraction.
 (b) Assuming all computations are done in exact arithmetic, find the largest open interval in \(\mathbb{R} \) where the fixed-point iteration \(x_{k+1} = f(x) \) is assured to converge.
 (c) Write a Newton iteration for finding the fixed-point.

2. Let \(x_1, x_2, \ldots, x_{n+1} \) be \(n + 1 \) distinct numbers. Let \(l_j(x) \) be the associated Lagrange basis polynomials, \(j = 1, \ldots, n + 1 \).
 (a) State the definition of \(l_j(x) \) and show that \(\{l_j(x)\}_{j=1}^{n+1} \) form a basis for \(\mathcal{P}_n \), the space of polynomials of degree at most \(n \).
 (b) Show that
 \[
 \sum_{j=1}^{n+1} (x - x_j)^k l_j(x) = 0, \quad \text{for all } k = 1, \ldots, n.
 \]

3. Consider the interval \([a, b] \) with the partition \(a = x_1 < x_2 < \cdots < x_n < x_{n+1} = b \). Suppose \(s(x) \) is the natural cubic spline that interpolates the data \(\{(x_i, y_i)\}_{i=1}^{n+1} \) and that \(g \in C^2[a, b] \) interpolates the same data. Show that
 \[
 \int_a^b (s''(x))^2 \, dx \leq \int_a^b (g''(x))^2 \, dx.
 \]

4. (a) Consider the inner product on \(C(0, 2) \) given by \((f, g) = \int_0^2 f(t) g(t) \, dt \). Find three orthonormal polynomials \(\phi_0, \phi_1, \phi_2 \) on \((0, 2) \) with respect to the given inner product such that the degree of \(\phi_n \) is equal to \(n \), \(n = 0, 1, 2 \).
 (b) Find the nodes \(t_1 \) and \(t_2 \) and weights \(w_1 \) and \(w_2 \) which yield the weighted Gaussian Quadrature formula
 \[
 \int_0^2 f(t) \, dt \approx w_1 f(t_1) + w_2 f(t_2)
 \]
 with degree of exactness \(m = 3 \). You should find the nodes exactly, and may leave the weights \(w_1, w_2 \) in integral form.

5. Let \(f \in C^\infty(a-H, a+H) \), and let \(h < H \). Let \(x_0 = a - h \), \(x_1 = a \) and \(x_2 = a + h \).
 (a) Find the finite difference approximation to \(f'(a) \) based the interpolant \(p_2 \) which satisfies \(p_2(x_0) = f(x_0), p_2(x_1) = f(x_1) \) and \(p_2(x_2) = f(x_2) \).
 (b) Let \(\psi_0(h) = \psi(h) \) be the difference approximation to \(f'(a) \) found in part (a). Assume (in exact arithmetic) \(\psi(h) \to \psi(0) = f'(a) \) as \(h \to 0 \), and that \(\psi(h) \) has the asymptotic expansion
 \[
 \psi(h) = \psi(0) + a_2 h^2 + a_4 h^4 + a_6 h^6 + \ldots.
 \]
 Find the general Richardson extrapolation formula for \(\psi_k(h) \) based on \(\psi_{k-1}(h/2) \) and \(\psi_{k-1}(h) \).