Do each of the ten problems. Be sure to put each problem on a separate page. Print your name on each page handed in. All work must be done in a neat and logical fashion in order to obtain credit.

1. Let K be a compact subset of a metric space X. Prove that K is closed.

2. Let Y be the metric space consisting of all continuous, real valued functions defined on $[0,1]$ with metric

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Let p be a fixed real number. Let E be the subset of Y which consists of all $f \in Y$ such that p is not in the range of f. Prove that E is an open subset of Y.

3. Let $E \subset R$ be a segment (open interval), and suppose $f : E \to R$ is monotonically increasing. Suppose also that $f(E)$ (the range of f) is a segment. Prove that f is continuous on E.

4. Suppose that $\{a_k\}$ is a sequence of non-zero real numbers, and

$$q = \lim_{k \to \infty} \frac{\log(\frac{1}{|a_k|})}{\log k}$$ exists

Prove that $\sum_{k=1}^{\infty} a_k$ converges absolutely if $q > 1$.

Hint: There is a real number p with $1 < p < q$.

5. Let $g : R \to R$ be defined by

$$g(x) = \begin{cases}
 x & \text{if } x < 0, \\
 x + 1 & \text{if } x \geq 0.
\end{cases}$$

Does there exist a differentiable function $f : R \to R$ such that $f'(x) = g(x)$ for each $x \in R$?

Give complete verification of your answer.

6. Let $f : [0,1] \to [0,\infty]$ be continuous. If $\int_0^1 f(x)dx = 0$, what can you say about f?

Give complete verification of your answer.
7. If

\[I(x) = \begin{cases}
0 & \text{if } x \leq 0, \\
1 & \text{if } x > 0,
\end{cases} \]

if \{x_n\} is a sequence of distinct points of (a, b) and if \(\sum_{n=1}^{\infty} |c_n| \) converges, what can you say about the convergence of the series

\[f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n), \quad a \leq x \leq b? \]

If \(x \in [a, b] \) and \(x \neq x_n \) for each \(n \), is \(f \) continuous at \(x \)? Give complete verification of your answers.

8. Let \(X \) be a measurable space, and let \(f \) be a real valued function defined on \(X \).

8a. Complete the following definition. The function \(f \) is said to be measurable if…….

8b. Prove that \(f \) is measurable if and only if for every open subset \(V \) of \(R \), \(f^{-1}(V) \) is measurable.

Hint: Any open subset of \(R \) is a countable union of segments (open intervals).

9. Let \((X, m, \mu) \) be a measurable space, and let \(f \geq 0 \) be an integrable function (with respect to \(\mu \)). Suppose \(\int_X f \ d\mu = 0 \).

Prove that \(f = 0 \) almost everywhere (with respect to \(\mu \)).

10a. State and prove Fatou’s theorem.

10b. Show that the inequality appearing in the theorem may be strict.