DO EACH OF THE TEN PROBLEMS. Be sure to put each problem on a separate page. Print your name on every page handed in. All work must be done in a neat and logical fashion in order to obtain credit.

1. If \(\{f_n\} \) and \(\{g_n\} \) are sequences of real-valued functions on a set \(E \) which converge uniformly to bounded functions \(f \) and \(g \), respectively, show that \(\{f_ng_n\} \) converges uniformly on \(E \).

2. Let \(A \subseteq \mathbb{R} \) be a non-empty set which has the property that every sequence in \(A \) has a subsequence that converges to a point of \(A \). Show that \(A \) is bounded above and that the least upper bound of \(A \) is an element of \(A \).

3. Let \(m \) denote Lebesgue measure on the real line and let \(f: \mathbb{R} \to \mathbb{R} \) be a Lebesgue integrable function. Suppose that \(\int_E f \, dm = 0 \) for every measurable \(E \subseteq \mathbb{R} \). Show that \(f = 0 \) almost everywhere.

4(a) Suppose that \(\sum a_n \) is a series of non-negative real numbers whose partial sums are bounded. Prove that the series

\[
\sum_{n=1}^{\infty} \frac{a_n}{n}
\]

is convergent.

(b) Does the conclusion of (a) remain true if the non-negativity hypothesis on the \(a_n \)'s is removed? Justify your answer.

5. Suppose that \(p > 0 \). Show that

\[
\lim_{n \to \infty} \sqrt[n]{p} = 1.
\]

6. Suppose that \(\{f_n\} \) is a sequence of continuous functions \(f_n: [0,1] \to \mathbb{R} \) which converges uniformly to \(f: [0,1] \to \mathbb{R} \). Prove, starting from the definition of uniform convergence, that

\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.
\]

7. Let \(\varphi \) be a finitely additive set function defined on a \(\sigma \)-ring \(\mathcal{R} \). Suppose that for any sequence of sets \(A_n \) from \(\mathcal{R} \) such that \(A_n \supseteq A_{n+1} \) for \(n = 1, 2, 3, \ldots \) and \(\cap_{n=1}^{\infty} A_n = \varnothing \), we have \(\lim_{n \to \infty} \varphi(A_n) = 0 \). Prove that \(\varphi \) is countably additive on \(\mathcal{R} \).
8(a) State the Generalized Mean Value Theorem.
(b) Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function which is differentiable at every point of $(0, 1)$. Show that for each $n = 1, 2, 3, \ldots$ there exists $c \in (0, 1)$ such that

$$f(1) - f(0) = \frac{f'(c)}{nc^{n-1}}.$$

9. Let $h : \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$h(x) = \begin{cases}
0, & x < -1 \\
1, & -1 \leq x \leq 1 \\
0, & 1 < x
\end{cases}$$

Is there a differentiable function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f'(x) = h(x)$?

10. Let $f : [0, \infty) \rightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases}
\sum_{n=1}^{\infty} (1 + n^3x)^{-1}, & \text{if } x > 0, \\
0, & \text{if } x = 0.
\end{cases}$$

(a) Is f continuous at $x = 0$?
(b) Determine the largest interval on which f is continuous.
[Explain your answers to both questions carefully.]