DO EACH OF THE TEN PROBLEMS. Be sure to put each problem on a separate page. Print your name on every page handed in. All work must be done in a neat and logical fashion in order to obtain credit.

1. Let \(\{f_n\} \) be a sequence of Lebesgue integrable functions defined on \(\mathbb{R} \) such that

\[
\int_{\mathbb{R}} |f_n| \, dm \leq \frac{1}{n^2} \quad (n = 1, 2, \ldots)
\]

Prove that \(\sum_{n=1}^{\infty} f_n(x) \) converges for almost every \(x \in \mathbb{R} \).

2. Define

\[
E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!},
\]

for \(z \) complex. Prove that \(E(z + w) = E(z)E(w) \) for all \(z, w \in \mathbb{C} \). Justify all the steps in your argument.

3. A subset \(A \) of \(\mathbb{R}^n \) is convex if whenever \(x, y \in A \) and \(0 < \lambda < 1 \) then \(\lambda x + (1 - \lambda)y \in A \). Prove that every convex subset of \(\mathbb{R}^n \) is connected.

4. Let \(A \) and \(B \) be Lebesgue measurable subsets of \([0, 1]\). Suppose that the Lebesgue measures of \(A \) and \(B \) are

\[
m(A) = \frac{1}{2},
\]

\[
m(B) = \frac{3}{4}.
\]

What are the maximum and minimum possible values of \(m(A \cap B) \)? Are all values between these extrema attained by \(m(A \cap B) \)?

5. Suppose that \(a_n \geq 0 \) for each \(n \) and that \(a_n \) is a decreasing sequence. Prove that \(\sum_{n=1}^{\infty} a_n \) converges if and only if

\[
\sum_{n=1}^{\infty} 3^n a_{3^n}
\]

converges.
6. Suppose that \(\phi: [a, b] \to \mathbb{R} \) is Riemann integrable and positive, and that \(f: [a, b] \to \mathbb{R} \) is continuous. Prove that there is a point \(x \in [a, b] \) such that
\[
\frac{\int_a^b f(t) \phi(t) \, dt}{\int_a^b \phi(t) \, dt} = f(x).
\]

7. Suppose that \(a < c < b \) and that \(f: (a, b) \to \mathbb{R} \) is a twice continuously differentiable function.
 (a) Compute
 \[
 \lim_{t \to 0} \frac{f(c + t) - f(c - t)}{2t}.
 \]
 (b) Compute
 \[
 \lim_{t \to 0} \frac{f(c + 2t) - 2f(c + t) + f(c)}{t^2}.
 \]

8. Suppose that \(a < b \) and that \(f: [a, b] \to \mathbb{R} \) is continuous. Prove that the image of \([a, b]\) under \(f \) is a closed and bounded interval.

9. Suppose that \(\{f_n(x)\} \) is a sequence of continuous functions and that \(\{f_n(x)\} \) converges uniformly to \(f(x) \) on \([0, 1]\). Prove that \(f(x) \) is continuous on \([0, 1]\).

10. Let
 \[
 f_n(x) = \frac{1}{nx + 1},
 \]
 for \(0 < x < 1 \) and \(n = 1, 2, 3, \ldots \)
 (a) Show that \(f_n(x) \to 0 \) monotonically in \((0, 1)\).
 (b) Is the convergence uniform?