DO AT MOST EIGHT OF THE TEN PROBLEMS. Be sure to put each problem on a separate page. Print your name on each page handed in. All work must be done in a neat and logical fashion in order to obtain credit.

1. Fill in the blank with one of the three words “compact,” “bounded,” “closed.” If \(\{A_\alpha\} \) is a collection of subsets of the reals such that the intersection of every finite subcollection of \(\{A_\alpha\} \) is nonempty, then \(\cap_\alpha A_\alpha \) is nonempty.

 Give examples showing that neither of the choices you omitted would make the statement correct.

2. Let \(D \) be a bounded subset of the reals. If \(f : D \to \mathbb{R} \) is continuous, must \(f \) be uniformly continuous?

3. Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of real numbers with \(a_n > 0 \) and \(b_n \geq 0 \). If both the sequence \(\{\frac{b_n}{a_n}\} \) and the series \(\sum a_n \) converge, does the series \(\sum b_n \) converge?

4. Define \(f : \mathbb{R} \to \mathbb{R} \) by

\[
f(x) = \begin{cases}
 x^2 \sin(1/x) + \frac{x}{2} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
\end{cases}
\]

 (1) Find \(f'(0) \);
 (2) find \(f'(\frac{1}{2n\pi}) \);
 (3) Is there an interval containing 0 on which \(f \) is increasing?

5. Let \(\{f_n\} \) be a sequence of Riemann integrable functions on the interval \([0,1]\). Let

\[
F_n(x) = \int_0^x f_n(t)dt + f_n(0).
\]

Prove

(1) If \(\{f_n\} \) is uniformly bounded (i.e. \(|f_n(x)| \leq M \) for all \(x \in [0,1] \) and all \(n \in \mathbb{N} \)), then there exists a subsequence \(\{F_{n_k}\} \) which converges uniformly on \([0,1]\).

(2) If each \(f_n \) is bounded, but not necessarily uniformly bounded, then there exists a subsequence \(\{F_{n_k}\} \) which converges at each rational number \(q \) in \([0,1]\).

6. Let \(f_n(x) = \sin(nx), 0 \leq x \leq 2\pi, n = 1, 2, 3, \ldots \)

 (1) Find \(\int_0^{2\pi} |f_n - f_m|^2 dx \).
 (2) Does there exist a subsequence \(\{n_k\} \) such that \(\{\sin(n_kx)\} \) converges for every \(x \in [0,2\pi] \).
7. Find a closed subset of the reals with positive Lebesgue measure that does not intersect the rationals.

8. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Let m denote Lebesgue measure. Prove, for every $\epsilon > 0$ there exists a Lebesgue measurable set A_ϵ, such that $m(A_\epsilon) < \infty$ and $\int_B |f| dm < \epsilon$, where $B = \mathbb{R} \setminus A_\epsilon$.

9. Let $\{f_n\}$ be a sequence of measurable functions. Prove the set of points x at which $\{f_n(x)\}$ converges is a measurable set.

10. Show, if $f : [0, 1] \to \mathbb{R}$ is Riemann integrable and $f(g) = 0$ for every rational number $g \in [0, 1]$, then $\int_0^1 f dx = 0$. Is the hypothesis f is Riemann integrable needed? What happens if Riemann integrable is replaced by Lebesgue integrable?