First Year Exam - Analysis
Sept. 1991

All work must be presented in a neat and logical manner. Put each problem on a separate sheet. Print Name on each sheet.

1. (a) Suppose \(f : (0, 1) \rightarrow \mathbb{R} \) is uniformly continuous.
 Show that \(\{ f(\frac{1}{n}) \}_{n=1}^{\infty} \) converges.

 (b) Define \(g : (0, 1) \rightarrow \mathbb{R} \) by \(g(x) = \sin(\frac{\pi}{2x}) \). Show \(g \) is not uniformly continuous.

2. (a) Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 0, & \text{if } x \text{ is irrational} \\
 \frac{1}{n}, & \text{if } x = \frac{m}{n}, \text{ where } n > 0 \text{ and g.c.d. } (m, n) = 1.
 \end{cases}
 \]
 Show \(f \) is continuous at each irrational number.

 (b) Define \(g : \mathbb{R} \rightarrow \mathbb{R} \) by
 \[
 g(x) = \begin{cases}
 1, & \text{if } x \text{ is irrational} \\
 0, & \text{if } x \text{ is rational}.
 \end{cases}
 \]
 Is \(f + g \) Riemann integrable on \([0, 1]\)?

3. In a metric space \(X \), let \(E' \) denote the set of all limit points of a set \(E \subset X \).
 Show that \(E' \) is closed and that \(E' = (E)' \).

4. Investigate the convergence or divergence of \(\Sigma a_n \) if
 (a) \(a_n = \sqrt{n+1} - \sqrt{n} \)
 (b) \(a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n} \)
 (c) \(a_n = (\sqrt{n} - 1)^n \).

5. Suppose \(a_n > 0 \) and \(\Sigma a_n \) diverges. Prove that \(\Sigma \frac{a_n}{1 + a_n} \) diverges.

6. Prove that \(e^x < \frac{1}{1-x} \) whenever \(x < 1 \) and \(x \neq 0 \).
7. Prove that
\[\ln 2 = \sum_{n=1}^{\infty} \frac{1}{n+1} \left(\frac{1}{2} \right)^{n+1}. \]
(Hint: Use the identity \(\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \).)

8. Let \(f \) be a nonnegative measurable function defined on the measurable set \(E. \)
 Suppose \(\int_E f \, dm = 0. \)
 Prove that \(f(x) = 0 \) almost everywhere on \(E. \)

9. Let \(A \) be a Lebesgue measurable set. Let \(\epsilon > 0 \) be given. Prove that there exists an
 open set \(G \) such that \(G \supset A \) and \(m(G - A) < \epsilon. \)

10. Give an example of a sequence of Lebesgue integrable functions \(f_n, n = 0, 1, 2, \ldots \) such
 that \(\{f_n\}_{n=1}^{\infty} \) converges uniformly to \(f_0 \) on \(\mathbb{R}, \) but \(\int_{\mathbb{R}} f_n \neq \int_{\mathbb{R}} f_0. \)