First-Year Analysis Examination, Part Two
January 2016

Do exactly two problems from Part A and two problems from part B. Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Part A

1. Let \(f_n : X \to \mathbb{R} \) be a uniformly convergent sequence of continuous functions on a compact metric space \(X \). Prove that the set \(\{f_n\} \) is equicontinuous on \(X \).

2. Let \(\sum_{n=0}^{\infty} a_n x^n \) be a power series which converges for all \(x \in \mathbb{R} \). State and prove the theorem concerning the uniform convergence of the series on finite intervals \([a, b] \). Must the series converge uniformly on all of \(\mathbb{R} \)? Prove, or give a counterexample.

3. Suppose \(f \geq 0 \), \(f \) is continuous on \([a, b] \), and \(\int_a^b f(x) \, dx = 0 \). Prove that \(f(x) = 0 \) for all \(x \in [a, b] \).

Part B

1. Let \(f_n : [0, 1] \to \mathbb{R} \) be a sequence of continuous functions. Prove that \(g = \lim \sup f_n \) and \(h = \lim \inf f_n \) are Lebesgue measurable.

2. For each of the following, either prove or give a counterexample (\(m \) denotes Lebesgue measure on \(\mathbb{R} \); assume all functions are measurable):
 a) If \(f_n \) is integrable for all \(n \), \(f_n \to f \) uniformly on \(\mathbb{R} \) and \(f \) is integrable, then \(\int_{\mathbb{R}} f_n \, dm \to \int_{\mathbb{R}} f \, dm \).
 b) If \(f_n \to f \) uniformly on \([0, 1] \) and \(f \) is integrable, then \(\int_0^1 f_n \, dm \to \int_0^1 f \, dm \).
 c) Suppose \(f_n \geq 0 \) and \(\int_0^1 f_n \, dm = 1 \) for all \(n \). If \(f_n \to f \) pointwise, then \(\int_0^1 f \, dm \leq 1 \).

3. State the monotone convergence theorem and Fatou’s theorem, and use the former to prove the latter.