Do exactly 2 problems from Part A and 2 problems from Part B. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

Part A

1. For \(n \geq 1 \) and \(0 < t < 1 \), let \(f_n(t) = t^n \). Prove that:
 a) \((f_n)\) converges uniformly on each compact subset of \((0,1)\),
 b) \((f_n)\) does not converge uniformly on \((0,1)\).

2. Suppose \(\mathcal{F} \) is an equicontinuous family of real-valued functions on \([0,1]\), such that
 \[
 \sup_{f \in \mathcal{F}} |f(0)| = M < +\infty.
 \]
 Prove that \(\mathcal{F} \) is uniformly bounded (that is, that \(\sup_{f \in \mathcal{F}} \sup_{x \in [0,1]} |f(x)| < +\infty \)).

3. Prove that every monotone function \(f : [a,b] \to \mathbb{R} \) is Riemann integrable.

Part B

1. State Fatou’s lemma and use it to prove the Dominated Convergence Theorem.

2. Let \((f_n) \) be a sequence of real-valued measurable functions on a measurable space \((X, \mathcal{M})\). Prove that each of the following subsets of \(X \) is measurable:
 a) \(\{ x \in X : \text{the sequence } (f_n(x)) \text{ is unbounded} \} \).
 b) \(\{ x \in X : \text{the sequence } (f_n(x)) \text{ is strictly increasing} \} \).

3. Let \(g : [0,1] \times [0,1] \to \mathbb{R} \) be a function with the following properties:
 i) \(|g(x,t)| \leq 1 \) for all \(x \) and \(t \),
 ii) for each \(t \), the function \(x \to g(x,t) \) is continuous on \([0,1] \), and
 iii) for each \(x \), the function \(t \to g(x,t) \) is continuous on \([0,1] \).

 Prove that the function \(h \) defined by
 \[
 h(x) = \int_0^1 g(x,t) \, dt
 \]
 is continuous on \([0,1] \).