1. Let F be a closed subset of the reals \mathbb{R} with the usual topology. Show F is a countable union of compact sets.

2. Let E be a nonempty subset of a metric space. State the definition of the distance $\rho_E(x)$ of a point x to E. Characterize \overline{E} in terms of ρ_E, where \overline{E} is the closure of E.

3. (a) Let f be a continuous function from a compact metric space X into a metric space Y. Prove $f(X)$ is compact.
 (b) Assume the setting in (a) with the further assumption that Y is the reals with the usual topology. Show that f assumes maximum and minimum values on X.

4. Let f be a continuous map of a metric space X into a metric space Y.
 (a) Show that if f is NOT uniformly continuous on X, then for some $\varepsilon > 0$ there are sequences $\{p_n\}, \{q_n\}$ in X such that $d_Y(f(p_n), f(q_n)) > \varepsilon$ for each n but $d_X(p_n, q_n) \to 0$.
 (b) Assume that X is compact. Show, using (a), that f is uniformly continuous on X.

5. Let $\{x_n\}$ be a sequence of points in (a,b) and let $\{c_n\}$ be a sequence of positive numbers such that $\sum c_n$ converges. Define
 \[
 f(x) = \sum_{n:x_n<x} c_n, \quad a < x < b,
 \]
 where the summation is understood as follows: sum over those indices n for which $x_n < x$. If there are no points $x_n < x$, define the sum to be zero.
 (a) Show $f(x^-) = f(x)$ for each x in (a,b).
 (b) Show $f(x_+^n) - f(x_-^n) = c_n$, for each n.

6. Suppose f is continuous on $[0, \infty)$, differentiable on $(0, \infty)$, $f(0) = 0$ and f' is monotonically increasing. Define g on $(0, \infty)$ by $g(x) = f(x)/x$, $x > 0$. Prove g is monotonically increasing.