Name: ______________________

1. (10 points) Determine the number of elements of order 6 in the symmetric group on 10 symbols.

2. (a) (5 points) Give an example of an abelian group with no maximal subgroups.
 (b) (5 points) Give an example of a commutative ring with no maximal ideals.

3. Let G be a finite group, H a normal subgroup. Suppose that p is a prime and Q is a Sylow p-subgroup of H.
 (a) (5 points) Prove the Frattini argument: $G = HN_G(Q)$.
 (b) (5 points) Suppose K is a normal subgroup of G of order prime to p, and that P is a Sylow p-subgroup of G. Show that $N_{G/K}(PK/K) = N_G(P)K/K$. (Hint: Apply (a) to the group $N = N_G(PK)$)

4. Let G be a group of order p^n, where p is prime and $n \geq 1$.
 (a) (5 points) Prove that G has a normal subgroup of order p^m for every integer m with $0 \leq m \leq n$. (You may use the fact that the center of a nontrivial p-group is not trivial.)
 (b) (5 points) Is it true that G has a characteristic subgroup of order p^m for every integer m with $0 \leq m \leq n$? (Justify your answer.)

5. (10 points) Let V be a finite-dimensional vector space over a field F and $T \in \text{End}_F(V)$ a linear transformation. Prove that there is a unique monic polynomial $m(x)$ in $F[x]$ with the property that $m(x)$ has the minimum degree among nonzero polynomials $f(x)$ such that $f(T)$ is the zero transformation.

6. (10 points) A commutative ring R with 1 is called a local ring if and only if it has a unique maximal ideal. Suppose that R is ring with a proper ideal M. Show that R is local, with maximal ideal M, if and only if every element of $R \setminus M$ (set difference) is a unit.

7. (a) (4 points) Prove that a prime $p \in \mathbb{N}$ such that $p \equiv 3 \pmod{4}$ is prime when considered as an element in the ring of Gaussian integers $\mathbb{Z}[i]$.
 (b) (3 points) Prove that a prime $p \in \mathbb{N}$ such that $p \equiv 1 \pmod{4}$ is a product of two non-associate primes in $\mathbb{Z}[i]$.
 (c) (3 points) Give a factorization of 30 as the product of a unit and powers of non-associate primes in $\mathbb{Z}[i]$.

8. Let R be the ring of $n \times n$ matrices over a field F, where $n \geq 2$.
(a) (7 points) Show that R has no ideals other than 0 and R.
(b) (3 points) Exhibit a nonzero proper left ideal of R.

9. (10 points) Let F be a field and K a splitting field over F of an irreducible polynomial $f(x) \in F[x]$. Prove that if α and β are roots of $f(x)$ in K, then the two subfields $F(\alpha)$ and $F(\beta)$ of K are isomorphic.

10. (10 points) Let F be a field.
 (a) (3 points) What does it mean to say that a field extension of F is algebraic?
 (b) (7 points) Let $F \subset K \subset L$ be three fields. Prove that if K is algebraic over F and L is algebraic over K, then L is algebraic over F.

11. (10 points) Find one representative of each conjugacy class of elements of order 4 in the group $GL(6, \mathbb{Q})$.