First Year Algebra Exam – May 2007

Time allowed: 240 minutes

Do seven of the following ten problems. Please do not turn in more than seven problems.

You must show your work. Answers with no work and/or no explanations will receive no credit. State clearly any theorem you use in your proofs.

In the problems, \mathbb{Z}, resp. \mathbb{N}, \mathbb{Q}, \mathbb{C}, is the set of all integers, resp. positive integers, rational numbers, complex numbers.

1. State the three Sylow theorems and prove the existence of Sylow subgroups.

2. Let H be a normal subgroup of G. Assume H is cyclic. Prove that any subgroup of H is also normal in G.

3. Classify, up to isomorphism, the groups of order 28 with non-cyclic Sylow 2-subgroups.

4. Prove that any nonzero vector space over a field \mathbb{F} has a basis. (You may assume Zorn's Lemma).

5. Let $R = \mathbb{Z}[x]$ be the ring of polynomials in variable x with integer coefficients. Let $I = (5, x^2 + 2)$ be the ideal of R generated by 5 and $x^2 + 2$. Prove that R/I is a finite field, and find its cardinality.

6. Consider the ring $\mathbb{F}[x, y]$ of polynomials in two commuting variables x, y over a field \mathbb{F}. Is this ring (i) a Euclidean domain? (ii) a principal ideal domain? (iii) a unique factorization domain? Justify your answer(s).

7. Let A be an $n \times n$-matrix with entries in \mathbb{Q}. Suppose A is invertible and $A^4 - 4A = 2A^{-1}$. Show that n is divisible by 5 and that such a matrix A is unique up to similarity.

8. Let T and S be linear transformations $\mathbb{C}^5 \rightarrow \mathbb{C}^5$, both with the same characteristic polynomial $x^2(x^2 + 1)(x - 3)$. Assume that their kernels, $\text{Ker}(T)$ and $\text{Ker}(S)$, have the same dimension. Are T and S necessarily similar? Justify your answer.

9. Let $p \in \mathbb{N}$ be a prime. Find a splitting field K for $x^p - p$ over \mathbb{Q}, and determine $[K : \mathbb{Q}]$.

10. Let \mathbb{F} be a subfield of a field K and let $\alpha, \beta \in K$ be algebraic over \mathbb{F}, of degree m and n, respectively. Assume m and n are coprime. Find the degree $[\mathbb{F}(\alpha, \beta) : \mathbb{F}]$.

1