First Year Algebra Exam – January 2002

Time allowed: 240 minutes

Do seven of the following ten problems. Please do not turn in more than seven problems. You must show your work. Answers with no work and/or no explanations will receive no credit. State clearly any theorem you use in your proofs.

In the problems, \(Z \), resp. \(Q \), \(C \), is the set of all integers, resp. rational numbers, complex numbers.

1. State and prove Cayley’s Theorem about finite groups.

2. Let \(H \) be a normal subgroup of \(G \). Assume \(H \) is cyclic. Prove that any subgroup of \(H \) is also normal in \(G \).

3. Prove that there is no simple group of order \(2002 = 2 \times 7 \times 11 \times 13 \).

4. Consider the ring \(Z[x] \) of polynomials in one variable \(x \) over the integers. Is \(Z[x] \) (i) a Euclidean domain? (ii) a principal ideal domain? (iii) a unique factorization domain? Justify your answers.

5. Let \(R \) be a ring. An \(R \)-module \(M \) is called irreducible if \(M \neq 0 \) and 0 and \(M \) are the only submodules of \(M \).
 a) Prove Schur’s Lemma: Suppose the \(R \)-modules \(M \) and \(N \) are irreducible. Then every nonzero homomorphism \(T : M \to N \) is an isomorphism.
 b) Let \(M \) be an irreducible \(R \)-module. Deduce from a) that \(\text{End}_R(M) \), the set of all (module) homomorphisms \(M \to M \), is a division ring.

6. Let \(F \) be a field and \(G \) be a finite subgroup of \(F \setminus \{0\} \), the multiplicative group of \(F \). Prove that \(G \) is cyclic.

7. Let \(A \) and \(B \) be two \(4 \times 4 \) matrices over \(C \), both with the same characteristic polynomial \((x - 1)^2(x - 2)(x - 3) \). Assume that \(A \) and \(B \) have the same minimal polynomial. Are \(A \) and \(B \) necessarily similar? Justify your answer.

8. How many conjugacy classes of elements of order 4 are there in the group \(GL_3(Q) \) of invertible \(3 \times 3 \) matrices over \(Q \)? Justify your answer and give a representative for each conjugacy class.

9. Find a splitting field \(F \) for \(x^6 - 4 \) over \(Q \), and find \([F : Q] \).

10. Let \(F \) be a field and \(E \) be an extension of \(F \) of degree 2001. Prove that \(F(u) = F(u^2) \) for any \(u \in E \).