1. Give an example of each of the following, with some explanation.
 (a) (3 points) A solvable group of order greater than 10.
 (b) (3 points) A non-cyclic abelian group.
 (c) (4 points) A finite group having a non-cyclic abelian proper subgroup.

2. (10 points) Let G be a finite group. Suppose that N is a normal subgroup of even order of G such that the non-trivial elements of N form a single conjugacy class of G. Prove that N is abelian.

3. (10 points) Let $G = A_5$ be the alternating group on 5 letters. Prove that G is a simple group.

4. (10 points) Let $G = D_{2n}$ be the dihedral group of order $2n$. Suppose that $n \geq 4$ is a power of 2. Prove that G is nilpotent and describe the nilpotency class of G.

5. (10 points) Let G be a group of order 30. Prove that G has a normal subgroup of order 15.

6. (10 points) State and prove Sylow’s First Theorem.