Name: ______________________________

Problems to be graded: 1 2 3 4 5 6

1. (10 points) Let p be a prime, let G be a finite group, and let P be a Sylow p-subgroup of G. Let H be a subgroup of G containing the normalizer $N_G(P)$ of P in G. Prove that then $N_G(H) = H$.

2. (10 points) State and prove the Second Isomorphism Theorem for groups.

3. Let $n \geq 2$, and let S_n be the symmetric group on n letters.
 (a) (2 points) Define what is a transposition of S_n.
 (b) (2 points) Give an example of a transposition of S_n.
 (c) (6 points) Prove that every element of S_n is a product of transpositions of S_n.

4. Let G be a finite group, and assume that G acts transitively on the finite non-empty set Ω. Let $\omega \in \Omega$. We denote by G_ω the set of elements of G that fix ω.
 (a) (3 points) Prove that G_ω is a subgroup of G.
 (b) (7 points) Prove that the number of elements in Ω is exactly $[G : G_\omega]$.

5. Let G be a finite group.
 (a) (5 points) Define what it means to say that G is solvable.
 (b) (5 points) Without assuming any result about solvable groups (i.e. just from your definition), prove that if the order of G is 20 then G is solvable.

6. (10 points) Prove or disprove the following statement. Let n be a natural number, let S_n be the symmetric group on n letters, let A_n be the alternating group on n letters, and let $\sigma \in S_n$. Then, if σ has order 2019 then $\sigma \in A_n$.