1. (10 points) State and prove Sylow’s First Theorem.

2. Consider the symmetric group S_6, and the corresponding alternating group A_6.
 (a) (5 points) How many elements of order 4 are there in S_6? Justify your answer.
 (b) (5 points) How many elements of order 4 are there in A_6? Justify your answer.

3. Let G be the alternating group A_{100}, and assume G acts on a finite set Ω.
 (a) (5 points) Prove that, if $|\Omega| = 90$, then G acts trivially on Ω, i.e. G has 90 orbits of size 1 on Ω.
 (b) (5 points) Prove that if $|\Omega| = 120$ and G does not act trivially on Ω, then G has, at most, 21 orbits on Ω.

4. (10 points) Prove that every group of order 30 has a normal subgroup of order 15.

5. (10 points) Let G be a group, let N be a normal subgroup of G, and let H be a subgroup of G. Assume that H is solvable. Prove that HN/N is a solvable group.

6. (10 points) Let G be a group of order 39. Does G need to be abelian? Prove that your answer is correct.